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SECOND-ORDER OPERATORS IN DG 
Motivation

§ Discretization of selft-adjoint operators in convection 
dominated problems: Navier-Stokes, convection-diffusion 
equation, Euler equations with artificial viscosity for shock 
capturing,…

How to treat the self-adjoint operator 
with a DG formulation?

Interior Penalty Method (IPM) 
Local Discontinuous Galerkin (LDG) 
…
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Interior Penalty Method (IPM)

§ Model problem over computational domain 

§ Model problem over “BROKEN” computational domain
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for e = 1, . . . , nel

IMPOSE CONTINUITY OF 
SOLUTION AND FLUXES

Douglas N. Arnold (1982)
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Definitions
• Computational domain: 

• With boundary                                     and 

•      is partitioned in       disjoint subdomains        s.t.  

• with boundaries          , which define an internal interface 
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NotationΓ
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[Montlaur, A., Fernández-Méndez, S., 
Huerta, A. IJNMF’08]
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Interior Penalty Method (IPM)

§ Model problem over computational domain 

§ Model problem over “BROKEN” computational domain
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What happens with Stokes?
§ The strong form 

§ Model problem over “BROKEN” computational domain
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r · u = 0 in ⌦,

u = uD on �D,
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for e = 1, . . . , nel

IMPOSE CONTINUITY OF 
SOLUTION AND FLUXES
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Interior Penalty Method (IPM)

§ Model problem over computational domain 

§ Model problem over “BROKEN” computational domain
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for e = 1, . . . , nel

IMPOSE CONTINUITY OF 
SOLUTION AND FLUXES

Douglas N. Arnold (1982)
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Interior Penalty Method (IPM)

§ Weak formulation in a generic element         

 where n is the unitary outward normal to 

Douglas N. Arnold (1982)

9

for e = 1, . . . , nel
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§ Adding over elements 
 
 
 
 
 
 
 
 
 
    or           is the union of all interior edges/faces 
    is the union of all exteriors edges/faces, which can be split 
in Dirichlet,         , and Neumann,       , boundaries 

IPM. Weak formulation

Useful identity (I)
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§ Useful identity: 

§ Assume       and       are adjacent elements, for that edge/face  

Useful identity
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§ Adding over elements
IPM. Weak formulation

non-symmetric

Useful identity (I)
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IPM. Weak formulation
§ Adding terms to obtain a symmetric bilinear form
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IPM. Weak formulation
§ Adding terms to obtain a symmetric bilinear form
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IPM. Weak formulation
§ Adding terms to obtain a symmetric bilinear form 

§ Now it is symmetric, but maybe not coercive. Add terms 

§ The bilinear form is coercive for β  large enough. 
                  ensures optimal convergence (consistent penalty).
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constant typical of Nitsche BC
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IPM. Stencil 2D 

Only neighboring elements adjacent to       are used

But        must be calculated on  
      (thus, dependence on all neighboring nodes)  
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IPM convergence
• Using polynomials of degree p the following optimal rates of 

convergence are demonstrated 

• If the penalty parameter is not defined as                      the 
optimal rate of convergence can be degraded. 
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Norm Order of convergence

p+1
p
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Local Discontinuous Galerkin (LDG)

§ Model problem 

§ Mixed formulation (system of first-order PDEs):

Cockburn and Shu (1998)
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• Mixed formulation and  
broken computational domain
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for e = 1, . . . , nel

IMPOSE CONTINUITY OF 
SOLUTION AND FLUXES
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LDG. Weak formulation

§ Weak formulation on 

§ Numerical fluxes 

21

8
><

>:

� �ru = 0 in ⌦e,

�r · � = f in ⌦e,

u = g on @⌦.

(
JunK = 0 on �,

Jn · �K = 0 on �,

Discontinuous Galerkin for diffusion problems: historical overview · July, 2017 ·    

LDG. Numerical fluxes
§ The numerical fluxes are defined as  

 with                                           
and a switch such that 

§ Some properties: 
• The u-flux does not depend on σ
• Consistency 

• Conservation

LOCAL DG
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LDG summary

 
 
with 

§ σ is isolated from LOCAL and replaced in GLOBAL 
  

This can be done after discretization… 
 or in the weak form using the so-called “lifting operators”
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LOCAL

GLOBAL
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LDG Stencil 2D
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Global equation at element       uses traces     of neighbors:�̂⌦e
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But     of neighbors requires solving local equation on red 
and green elements 

�̂

Discontinuous Galerkin for diffusion problems: historical overview · July, 2017 ·    26

Local equation uses traces of primal variable (no derivatives)
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Are LDG and IPM alike?
§ Integrate by parts LOCAL equation 

§ Sum over elements, and apply identity (I) to the previous 
equation and the GLOBAL equation. LDG is rewritten as 

§ Recall: determine σ from LOCAL and replace in GLOBAL to 
get an equation with only u
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LOCAL

GLOBAL
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Lifting operators

[Remark: here u and σ denote the LDG solution, not the analytical solution] 

The lifting operators    and    are defined as 

Now LOCAL in strong form can be replaced in GLOBAL…
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LOCAL

LOCAL in strong form



Discontinuous Galerkin for diffusion problems: historical overview · July, 2017 ·    

LDG primal form

 
LDG weak form Ξ IPM weak form + extra terms
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LDG convergence
• Using polynomials of degree p the following optimal rates of 

convergence are demonstrated 

• Recall: 

• The optimal order of convergence in the        norm is obtained 
when the parameter        is mesh-dependent   
(      must be h-1 like the penalty parameter of the IPM).  
 
If        is constant the order is not optimal (p+1/2).
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Norm Order of convergence
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Compact Discontinuous Galerkin (CDG)
§ LDG stencil is larger than IPM stencil: lost of compactness 

due to the lifting operators 
§ CDG [Peraire & Persson SISC’08]: modify liftings to keep 

compactness 

 Instead of                                                                , solution of 
the LOCAL problem, CDG considers for each face i 

  
with the  

 modified liftings 

 CGD weak form similar to LDG but compact scheme
31

Discontinuous Galerkin for diffusion problems: historical overview · July, 2017 ·    

Comparison IPM and CDG 
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IPM CDG 
compact methods (relative to LDG) 

optimal convergence rates  

similar accuracy 

straight-forward rationale and 
implementation 

non trivial implementation 
and extra computational cost 
of lifting operators 

necessary tuning of      
penalty parameter 

less sensitive to the selection 
of          parameter 

[Montaur, Fernández-Méndez, Peraire, AH IJNMF’09]
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DG unified analysis for self-adjoint operators
[Arnold, Brezzi, Cockburn and Marini, SINUM’02]
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High vs. Low-order
Do we need high-order? 
Literature conclusions are non-conclusive: 
§ [Vos, Sherwin & Kirby, JCP’10] :  

“for a low error level of 10% a reasonably coarse 
mesh with a sixth-order spectral/hp expansions 
minimised the run-time” 

§ [Löhner, IJNMF’11+’13] : 
“The comparison of error and work estimates shows 
that for relative accuracy in the 0.1% range, which is 
one order below the typical accuracy of engineering 
interest (1% range), linear elements may outperform 
all high-order elements.” 

§ … [AH, A. Aleksandar, X. Roca, J. Peraire, IJNME’13]
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Computational cost estimate
• Compare for different: 
• Galerkin methods: CG, CG(NSC), CDG and HDG 
• Element types: simplices/paralellotopes in 2D/3D 
• Approximation orders p (low versus high) 

• How to evaluate computational cost:  
• Asymptotic estimates: major uncertainties   
• Cost indicators (number of: elements, DOF, non-zeros per 

row, non-zeros): not enough information 
• Operation count: cost of local (element-by-element) and 

global operations ... (memory operations) 

• To compute cost estimates evaluate FLOPS for 
§ Creating element and face matrices 
§ Solving the local problem  
§ Solving the global problem
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Parallelizable
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Computational cost estimate
• Major hypothesis: 
• Structured uniform mesh having a number of boundary 

faces negligible compared with the number of interior 
ones, 

• Smooth solution (bounded solution & bounded derivatives) 
and such that the approximation error is controlled by the 
interpolation one 

• Compare computational cost to achieve the same 
level of accuracy 

• Estimate ratio between low and high order elements 
for a given approximation error
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with parallelization!

with parallelization!
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HIGH vs. LOW order 
§ Based on FLOPS (not asymptotic, not runtime,...) 
§ High-order approximations outperform low-order (smooth 

solutions) 
✓in 2D and more in 3D 
✓at engineering accuracy or higher (2 digits) 
✓always for global solves (implicit) 
✓also for element-by-element (explicit) if straight-

sided elements or sum-factorization is used 
§ Only case for p=1: explicit codes and non-linear problems and 

majority of curved elements 

[AH, A. Aleksandar, X. Roca, J. Peraire, IJNME’13] 
[G. Giorgiani, D. Modesto, S. Fernandez-Mendez, AH, IJNMF’13]
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Continuous versus Discontinuous
§ All the freedom to choose interpolation functions 

element-by-element, numerical flux stabilization, data 
structure, local conservation, …  
pays-off the overhead of edge/face node duplication? 

§ Only for explicit schemes… 
§ NOT for low-order but YES for high-order 

approximations... 

§ Can DG outperform CG in an implicit problem?

43

Discontinuous Galerkin for diffusion problems: historical overview · July, 2017 ·    44

pHDG = 1.04 CG

pHDG = 1.32 CG

[AH, A. Aleksandar, X. Roca, J. Peraire IJNME’13]

REMEMBER:

Number crunching is NOT our goal


Computability is NOT only operation count
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Stencil: CG versus CDG
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Stencil: CG versus HDG

47

Discontinuous Galerkin for diffusion problems: historical overview · July, 2017 ·    

Scattering circle
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10% runtime reduction

CG: 781 226 ndof ➠ 5161 bandwidth 
HDG: 937 230 ndof ➠ 3438 bandwidth
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THE COMPLETE STORY

Total runtime 60% 
more expensive
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THE COMPLETE 

COMPLETE STORY
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ADAPTIVITY process 
§ CHEAP and RELIABLE error estimate 

§ Degree update in each element K (inspired in [Remacle, 
Flaherty & Shepard’03]) 
	 Goal: uniform error distribution 

§ Degree update for faces  
	 [Cockburn, Chen’12]

K+

K-

F
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HDG superconvergent solution
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Incident 

wave

Example: Barcelona harbor
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Two areas of interest

[G. Giorgiani, S. Fernandez-Mendez, AH IJNMF’13] 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• Final p-map 

• Final error map in the two areas of interest:
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Barcelona harbor
Applications: wave propagation in harbors

DOF reduction 
respect to CG
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